Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides.

نویسندگان

  • B P Monia
  • J F Johnston
  • D J Ecker
  • M A Zounes
  • W F Lima
  • S M Freier
چکیده

A biological reporter gene assay was employed to determine the crucial parameters for maximizing selective targeting of a Ha-ras codon 12 point mutation (G----T) using phosphorothioate antisense oligonucleotides. We have tested a series of oligonucleotides ranging in length between 5 and 25 bases, each centered around the codon 12 point mutation. Our results indicate that selective targeting of this point mutation can be achieved with phosphorothioate antisense oligonucleotides, but this selectivity is critically dependent upon oligonucleotide length and concentration. The maximum selectivity observed in antisense experiments, 5-fold for a 17-base oligonucleotide, was closely predicted by a simple thermodynamic model that relates the fraction of mutant to wild type target bound as a function of oligonucleotide concentration and affinity. These results suggest thermodynamic analysis of oligonucleotide/target interactions is useful in predicting the specificity that can be achieved by an antisense oligonucleotide targeted to a single base point mutation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice.

Ras oncogenes owe their transforming properties to single point mutations in the sequence coding for the active site of the p21 protein. These mutations lead to changes in cellular proliferation and induce tumorigenic properties. Point mutations represent a well-defined target for antisense oligonucleotides that can specifically suppress the translation of the targeted mutant mRNA. We show that...

متن کامل

Specific Inhibition of the Expression of the Promyelocytic Leukemia (PML) Protein by Anti-Sense Oligonucleotides

In the present study, using anti-sense oligonucleotides the inhibition of expression of the PML protein hasbeen investigated. The anti-sense oligonucleotides were designed against the translation initiation site ofthe PML gene, and their effects were investigated on cellular growth and DNA synthesis. Incubation of normalhuman fibroblast cells with the anti-sense oligonucleotid...

متن کامل

Effects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli

Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...

متن کامل

Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat.

Huntington's disease (HD) is a currently incurable neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat within the huntingtin (HTT) gene. Therapeutic approaches include selectively inhibiting the expression of the mutated HTT allele while conserving function of the normal allele. We have evaluated a series of antisense oligonucleotides (ASOs) targeted to the expanded ...

متن کامل

Synthetic oligonucleotides as therapeutic agents.

Currently there is much excitement in certain quarters about antisense oligonucleotides, both as the drugs of the future for treatment of cancer and viral infections, most notably AIDS, and also as genetic tools for generating mutant phenocopies without genomic mutation in investigations of mammalian gene function. The extent of this excitement is reflected in the proliferation of antisense bio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 267 28  شماره 

صفحات  -

تاریخ انتشار 1992